Phosphatidylinositol 3-kinase activity is required for epidermal growth factor to suppress proteolysis.
نویسندگان
چکیده
Suppression of protein breakdown occurs commonly in cell growth, but the pathways responsible for controlling proteolysis are poorly understood. Protein breakdown in NRK-52E renal epithelial cells treated with epidermal growth factor (EGF) and intracellular signaling inhibitors or dominant negative signaling molecules contained in an adenoviral vector were measured. The tyrosine kinase inhibitor, herbimycin A, eliminated the suppression of proteolysis induced by EGF. In contrast, the Src inhibitor, PP1, had no effect. Expression of dominant negative H-RasY57 blocked the ability of EGF to stimulate downstream targets of Ras and also reduced the ability of EGF to suppress proteolysis. Inhibiting MEK did not influence the ability of EGF to suppress proteolysis, but the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor, LY249002, stimulated basal proteolysis and completely eliminated the proteolytic response to EGF. Use of an adenovirus that expresses a dominant negative p85 subunit of class 1 PI 3-kinase completely blocked the ability of EGF to suppress proteolysis, whereas use of an adenovirus expressing a K227E constitutively active p110 subunit reproduced the reduction in protein breakdown. It was concluded that EGF suppresses proteolysis by a mechanism that involves Ras and class 1 PI 3-kinase.
منابع مشابه
Phosphatidylinositol 4-kinase is required for endosomal trafficking and degradation of the EGF receptor.
The type II alpha isoform of phosphatidylinositol 4-kinase has recently been shown to function in the recruitment of adaptor protein-1 complexes to the trans-Golgi network. Here we show that phosphatidylinositol 4-kinase IIalpha is also a component of highly dynamic membranes of the endosomal system where it colocalises with protein markers of the late endosome and with endocytosed epidermal gr...
متن کاملDiverse antiapoptotic signaling pathways activated by vasoactive intestinal polypeptide, epidermal growth factor, and phosphatidylinositol 3-kinase in prostate cancer cells converge on BAD.
It has been demonstrated that vasoactive intestinal polypeptide, epidermal growth factor, and chronic activation of phosphatidylinositol 3-kinase can protect prostate cancer cells from apoptosis; however, the signaling pathways that they use and molecules that they target are unknown. We report that vasoactive intestinal polypeptide, epidermal growth factor, and phosphatidylinositol 3-kinase ac...
متن کاملRequirement for phosphatidylinositol 3-kinase in epidermal growth factor-induced AP-1 transactivation and transformation in JB6 P+ cells.
Phosphatidylinositol 3-kinase (PI 3-kinase) plays a role in a variety of biological processes, including regulation of gene expression, cell growth, and differentiation. However, little is known about its role in the cytoplasmic events involved in epidermal growth factor (EGF)-induced transduction of signals to the transcriptional machinery of the nucleus and in EGF-induced cell transformation....
متن کاملMolecular Docking Based on Virtual Screening, Molecular Dynamics and Atoms in Molecules Studies to Identify the Potential Human Epidermal Receptor 2 Intracellular Domain Inhibitors
Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Overexpression of HER2 usually causes malignant transformation of cells and is responsible for the breast cancer. In this work, the virtual screening, molecular docking, quantum mechanics and molecular dynamics methods were employed to study protein–ligand ...
متن کاملType I γ Phosphatidylinositol Phosphate 5-Kinase i5 Controls the Ubiquitination and Degradation of the Tumor Suppressor Mitogen-inducible Gene 6.
Mitogen-inducible gene 6 (Mig6) is a tumor suppressor, and the disruption of Mig6 expression is associated with cancer development. Mig6 directly interacts with epidermal growth factor receptor (EGFR) to suppress the activation and downstream signaling of EGFR. Therefore, loss of Mig6 enhances EGFR-mediated signaling and promotes EGFR-dependent carcinogenesis. The molecular mechanism modulating...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Society of Nephrology : JASN
دوره 13 4 شماره
صفحات -
تاریخ انتشار 2002